Titan Chemische Zusammensetzung

DIN 17 850

Titanium, chemical composition
Titane, composition chimique

Ersatz für Ausgabe 03.70

1 Anwendungsbereich

Diese Norm gilt für die chemische Zusammensetzung von Halbzeug aus Titan.

Für Schweißzusätze siehe DIN 1737 Teil 1.

2 Bezeichnung

DK 669.295.018.252.2

Zum Bezeichnen von Titan nach dieser Norm sind die Werkstoff-Kurzzeichen und Werkstoff-Nummern der Tabelle 1 anzuwenden.

Beispiel:

Titan mit dem Werkstoff-Kurzzeichen Ti2 und der Werkstoff-Nummer 3.7035 wird bezeichnet:

Titan DIN 17 850 - Ti2

oder Titan DIN 17 850 - 3.7035

3 Chemische Zusammensetzung

3.1 Schmelzenanalyse

Die chemische Zusammensetzung der Titan-Sorten nach der Schmelzenanalyse ist in Tabelle 1 angegeben.

3.2 Stückanalyse

Die Grenzabweichungen der Stückanalyse von den Grenzwerten der Schmelzenanalyse sind in Tabelle 2 angegeben.

4 Halbzeugarten

Halbzeugarten aus Titan-Werkstoffen sind in Tabelle 3 wie folgt gekennzeichnet:

- x: Diese Halbzeugart wird als handelsüblich angesehen.
- (x): Diese Halbzeugart wird für Sonderzwecke hergestellt.

Eigenschaften der gekennzeichneten Halbzeugarten sind in den Normen angegeben, die im Kopf der Tabelle 3 genannt sind.

5 Prüfung der Zusammensetzung

Die in den Tabellen 1 und 2 angegebenen Elemente werden nach einem anerkannten Verfahren quantitativ bestimmt. Zum Vergleich mit den Grenzwerten dieser Norm ist jedes Meßergebnis entsprechend der Rundungsregel nach DIN 1333 Teil 2 auf dieselbe Anzahl der Stellen wie die des Grenzwertes zu runden.

Tabelle 1. Chemische Zusammensetzung von Titan nach der Schmelzenanalyse

Werkstoff-		Chemische Zusammensetzung Massenanteile in %							
		Fe 1)	0	N	С	H ²)	Sonstige		Ti
Kurzzeichen	Nummer	max.	max.	max.	max.	max.	einzeln _{max.}	zusammen max.	
Ti1	3.7025	0,15	0,12	0,05	0,06	0,013	0,10	0,40	Rest
Ti2	3.7035	0,20	0,18	0,05	0,06	0,013	0,10	0,40	Rest
Ti3	3.7055	0,25	0,25	0,05	0,06	0,013	0,10	0,40	Rest
Ti4	3.7065	0,30	0,35	0,05	0,06	0,013	0,10	0,40	Rest

¹⁾ Bei Anwendung in sehr stark oxidierenden Medien kann ein Fe-Gehalt von max. 0,10 bei Bestellung vereinbart werden.

Fortsetzung Seite 2 und 3

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e.V.

²⁾ Bei Halbzeug unter 2 mm Dicke oder Durchmesser sowie am Fertigteil sind Wasserstoff-Gehalte bis zu 0,015 % zulässig.